ÈÈÏߣº021-66110819,13564362870
Email£ºinfo@vizai.cn
ÈÈÏߣº021-66110819,13564362870
Email£ºinfo@vizai.cn
±¾Ñо¿µÄ½á¹û±íÃ÷£¬µ±´æÔÚÒ»¸öÒÔÉϵĵç×ÓÊÜÌåʱ£¬ÉúÎïĤÖеĺôÎüºÍ´úлÉúÀí·Ö²ãÇé¿ö¡£ ËäÈ»ÜȲ˺컹ÔÓëÑô¼«¾ºÕùµç×Ó£¬µ«ÍÑÉ«Á´Çò¾ú¾úÖêS12ͬʱÓëÑô¼«ºÍÜȲ˺ìºôÎü¡£ ´ËÍ⣬MFCsÑô¼«ÊÒÖгöÏÖÁË¿Õ¼ä·ÖÀëµÄºôÎüģʽ¡£ ¸¡ÓÎϸ°ûºÍÍâ²ãÉúÎïĤϸ°ûÇãÏòÓÚʹÓÃÜȲ˺ì×÷Ϊµç×ÓÊÜÌ壬¶øÄÚ²ãÉúÎïĤϸ°ûÇãÏòÓÚʹÓÃÑô¼«×÷Ϊµç×ÓÊÜÌå¡£ Óë½öÓÃÑô¼«ºôÎüµÄÉúÎïĤÏà±È£¬¶îÍâµÄÜȲ˺ìºôÎüÇýÉ¢ÁËÉúÎïĤÖеÄÖÊ×Ó»ýÀÛ¡£ Ñô¼«ºôÎüÉúÎïĤµÄÑõ»¯»¹Ôµçλ³ÊÏÖÏȽµµÍºóÉý¸ßµÄÇ÷ÊÆ£¬ÕâÓëÆä½éÖÊÕ¼Ö÷µ¼µØλµÄÐÔÖÊÏàÒ»Ö¡£ ¶îÍâµÄÜȲ˺ôÎü¶ÔÉúÎïĤµçλӰÏì½ÏС£¬µ«Ñô¼«µçλÏÔ׎µµÍ¡£ ÓëʹÓÃΨһµç×ÓÊÜÌåºôÎüµÄÉúÎïĤÏà±È£¬ÓÉÓÚÉúÎïĤÄÚµÄË«ÏòºôÎüµç×ÓתÒÆ£¬Í¬Ê±Ê¹ÓÃÜȲ˺ìºÍÑô¼«ºôÎüµÄÉúÎïĤÖй۲쵽¸ü¸ßºÍ¸ü¾ùÔȵĻîÐÔ·Ö²¼¡£ ËäÈ»ÜȲ˺컹ÔÓëÑô¼«¾ºÕùµç×Ó£¬µ«ÍÑÉ«Á´Çò¾ú¾úÖêS12ͬʱÓëÑô¼«ºÍÜȲ˺ìºôÎü¡£´ËÍ⣬MFCsÑô¼«ÊÒÖгöÏÖÁË¿Õ¼ä·ÖÀëµÄºôÎüģʽ¡£¸¡ÓÎϸ°ûºÍÍâ²ãÉúÎïĤϸ°ûÇãÏòÓÚʹÓÃÜȲ˺ì×÷Ϊµç×ÓÊÜÌ壬¶øÄÚ²ãÉúÎïĤϸ°ûÇãÏòÓÚʹÓÃÑô¼«×÷Ϊµç×ÓÊÜÌå¡£Óë½öÓÃÑô¼«ºôÎüµÄÉúÎïĤÏà±È£¬¶îÍâµÄÜȲ˺ìºôÎüÇýÉ¢ÁËÉúÎïĤÖеÄÖÊ×Ó»ýÀÛ¡£Ñô¼«ºôÎüÉúÎïĤµÄÑõ»¯»¹Ôµçλ³ÊÏÖÏȽµµÍºóÉý¸ßµÄÇ÷ÊÆ£¬ÕâÓëÆä½éÖÊÕ¼Ö÷µ¼µØλµÄÐÔÖÊÏàÒ»Ö¡£¶îÍâµÄÜȲ˺ôÎü¶ÔÉúÎïĤµçλӰÏì½ÏС£¬µ«Ñô¼«µçλÏÔÖø½µµÍ¡£ÓëʹÓÃΨһµç×ÓÊÜÌåºôÎüµÄÉúÎïĤÏà±È£¬ÓÉÓÚÉúÎïĤÄÚµÄË«ÏòºôÎüµç×ÓתÒÆ£¬Í¬Ê±Ê¹ÓÃÜȲ˺ìºÍÑô¼«ºôÎüµÄÉúÎïĤÖй۲쵽¸ü¸ßºÍ¸ü¾ùÔȵĻîÐÔ·Ö²¼¡£
¹ØÁªÄÚÈÝ
Ö§³ÖÐÅÏ¢
ͼS1 ? S7¡£ ´Ë²ÄÁÏ¿Éͨ¹ý»¥ÁªÍøÃâ·Ñ»ñÈ¡£¬ÍøַΪ http://pubs.acs.org.
×÷ÕßÐÅÏ¢
ͨѶ×÷Õß
*µç»°£º+862087684471¡£ ´«Õ棺+862087684587¡£ µçÓÊ£º xumy@gdim.cn.
×÷Õß¹±Ï×
Y.Y.£¬M.X.ºÍG.S.Éè¼ÆÁËʵÑé¡£ Y.Y.ºÍY.X.½øÐÐÁËʵÑé¡£ Y.Y.£¬W.-M.W.£¬ºÍM.X.·ÖÎöÊý¾Ý²¢×«Ð´Êָ塣
±Ê¼Ç
×÷ÕßÉùÃ÷ûÓÐÏ໥¾ºÕùµÄ¾¼ÃÀûÒæ¡£
¿·¢ÊÖ»ú¹ÙÍø¸ÐлJoy D.Van Nostrand²©Ê¿¶ÔÓïÑÔÐÞ¶©µÄÈÈÇé°ïÖú¡£ ±¾Ñо¿µÃµ½Öйú¹ú¼Ò»ù´¡Ñо¿¼Æ»®£¨973¼Æ»®£©£¨2012CB22307£©¡¢Öйú¹ã¶«×ÔÈ»¿Æѧ»ù½ð£¨S2013010014596£©¡¢¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð£¨51422803, 31200096£©¡¢¹ã¶«¿ÆѧԺÓÅÐãѧÕß¿ÎÌ⣨RCJJ201502£©µÄ×ÊÖú¡£ ¹ã¶«Ê¡º£Ñó¾¼ÃÇøÓò´´Ð·¢Õ¹Ê¾·¶ÏîÄ¿£¨GD2012-D01-002£©¡£
(1) Kato, S.; Hashimoto, K.; Watanabe, K. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (25), 10042?10046.
(2) Pfeffer, C.; Larsen, S.; Song, J.; Dong, M.; Besenbacher, F.; Meyer, R. L.; Kjeldsen, K. U.; Schreiber, L.; Gorby, Y. A.; El-Naggar, M. Y.; Leung, K. M.; Schramm, A.; Risgaard-Petersen, N.; Nielsen, L. P. Filamentous bacteria transport electrons over centimetre distances. Nature 2012, 491 (7423), 218?221.
(3) Cunningham, J. A.; Rahme, H.; Hopkins, G. D.; Lebron, C.; Reinhard, M. Enhanced in situ bioremediation of BTEX contaminated groundwater by combined injection of nitrate and sulfate. Environ. Sci. Technol. 2001, 35 (8), 1663?1670.
(4) Finneran, K. T.; Lovley, D. R. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Environ. Sci. Technol. 2001, 35 (9), 1785?1790.
(5) Xu, M.; Zhang, Q.; Xia, C.; Zhong, Y.; Sun, G.; Guo, J.; Yuan, T.; Zhou, J.; He, Z. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME J. 2014, 8 (9), 1932?1944.
(6) Tender, L. M.; Reimers, C. E.; Stecher, H. A.; Holmes, D. E.; Bond, D. R.; Lowy, D. A.; Pilobello, K.; Fertig, S. J.; Lovley, D. R. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 2002, 20 (8), 821?825.
(7) Donovan, C.; Dewan, A.; Heo, D.; Beyenal, H. Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ. Sci. Technol. 2008, 42 (22), 8591?8596.
(8) Morris, J. M.; Jin, S. Influence of NO3 and SO4 on power generation from microbial fuel cells. Chem. Eng. J. 2009, 153 (1?3), 127?130.
(9) Yang, Y.; Xiang, Y.; Xia, C.; Wu, W. M.; Sun, G.; Xu, M. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems. Bioresour. Technol. 2014, 164, 270?275.
(10) Parameswaran, P.; Torres, C. I.; Lee, H. S.; Krajmalnik-Brown, R.; Rittmann, B. E. Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: Electron Balances. Biotechnol. Bioeng. 2009, 103 (3), 513?523.
(11) Huang, L. P.; Gan, L. L.; Wang, N.; Quan, X.; Logan, B. E.; Chen, G. H. Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells. Biotechnol. Bioeng. 2012, 109 (9), 2211?2221.
(12) Wu, D.; Xing, D.; Lu, L.; Wei, M.; Liu, B.; Ren, N. Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs. Bioresour. Technol. 2013, 135, 630?634.
(13) Snider, R. M.; Strycharz-Glaven, S. M.; Tsoi, S. D.; Erickson, J. S.; Tender, L. M. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (38), 15467?15472.
(14) Malvankar, N. S.; Vargas, M.; Nevin, K. P.; Franks, A. E.; Leang, C.; Kim, B.-C.; Inoue, K.; Mester, T.; Covalla, S. F.; Johnson, J. P.; Rotello, V. M.; Tuominen, M. T.; Lovley, D. R. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nano 2011, 6 (9), 573?579.
(15) Strycharz-Glaven, S. M.; Snider, R. M.; Guiseppi-Elie, A.; Tender, L. M. On the electrical conductivity of microbial nanowires and biofilms. Energy Environ. Sci. 2011, 4 (11), 4366?4379.
(16) Renslow, R. S.; Babauta, J. T.; Dohnalkova, A. C.; Boyanov, M. I.; Kemner, K. M.; Majors, P. D.; Fredrickson, J. K.; Beyenal, H. Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms. Energy Environ. Sci. 2013, 6 (6), 1827?1836.
(17) Babauta, J. T.; Nguyen, H. D.; Beyenal, H. Redox and pH Microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism. Environ. Sci. Technol. 2011, 45 (15), 6654?6660.
(18) Babauta, J. T.; Nguyen, H. D.; Harrington, T. D.; Renslow, R.; Beyenal, H. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer. Biotechnol. Bioeng. 2012, 109 (10), 2651? 2662.
(19) Franks, A. E.; Glaven, R. H.; Lovley, D. R. Real-time spatial gene expression analysis within current-producing biofilms. ChemSusChem 2012, 5 (6), 1092?1098.
(20) Xu, M. Y.; Guo, J.; Kong, X. Y.; Chen, X. J.; Sun, G. P. Fe(III)- enhanced azo reduction by Shewanella decolorationis S12. Appl. Microbial. Biotechnol. 2007, 74 (6), 1342?1349.
(21) Hong, Y. G.; Xu, M. Y.; Guo, J.; Xu, Z. C.; Chen, X. J.; Sun, G. P. Respiration and growth of Shewanella decolorationis S12 with an azo compound as the sole electron acceptor. Appl. Environ. Microbiol. 2007, 73 (1), 64?72.
(22) Read, S. T.; Dutta, P.; Bond, P. L.; Keller, J.; Rabaey, K. Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol. 2010, 10, 98.
(23) Schrott, G. D.; Ordonez, M. V.; Robuschi, L.; Busalmen, J. P. Physiological stratification in electricity-producing biofilms of Geobacter sulfurreducens. ChemSusChem 2014, 7 (2), 598?603.
(24) Yang, Y.; Guo, J.; Sun, G.; Xu, M. Characterizing the snorkeling respiration and growth of Shewanella decolorationis S12. Bioresour. Technol. 2013, 128, 472?478.
(25) Teal, T. K.; Lies, D. P.; Wold, B. J.; Newman, D. K. Spatiometabolic stratification of Shewanella oneidensis biofilms. Appl. Environ. Microbial. 2006, 72 (11), 7324?7330.
(26) Nielsen, L. P.; Risgaard-Petersen, N.; Fossing, H.; Christensen, P. B.; Sayama, M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 2010, 463 (7284), 1071?1074.
(27) Yuan, Y.; Zhou, S. G.; Tang, J. H. In situ investigation of cathode and local biofilm microenvironments reveals important roles of OH- and oxygen transport in microbial fuel cells. Environ. Sci. Technol. 2013, 47 (9), 4911?4917.
(28) Rabaey, K.; Verstraete, W. Microbial fuel cells: Novel biotechnology for energy generation. Trends. Biotechnol. 2005, 23 (6), 291?298.
(29) Chen, X.; Sun, G.; Xu, M. Role of iron in azoreduction by resting cells of Shewanella decolorationis S12. J. Appl. Microbiol. 2011, 110 (2), 580?586.
(30) Wei, J. C.; Liang, P.; Cao, X. X.; Huang, X. A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ. Sci. Technol. 2010, 44 (8), 3187?3191.
(31) Solis, M.; Solis, A.; Perez, H. I.; Manjarrez, N.; Flores, M. Microbial decolouration of azo dyes: A review. Process. Biochem. 2012, 47 (12), 1723?1748.
(32) Hong, Y. G.; Guo, J.; Xu, Z. C.; Mo, C. Y.; Xu, M. Y.; Sun, G. P. Reduction and partial degradation mechanisms of naphthylaminesulfonic azo dye amaranth by Shewanella decolordtionis S12. Appl. Microbial. Biotechnol. 2007, 75 (3), 647?654.
(33) Li, S. L.; Freguia, S.; Liu, S. M.; Cheng, S. S.; Tsujimura, S.; Shirai, O.; Kano, K. Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes. Biosens. Bioelectron. 2010, 25 (12), 2651?2656.
(34) Yang, Y.; Sun, G.; Guo, J.; Xu, M. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions. Bioresour. Technol. 2011, 102 (14), 7093?7098.
(35) Picioreanu, C.; van Loosdrecht, M. C.; Curtis, T. P.; Scott, K. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry 2010, 78 (1), 8?24.
(36) Franks, A. E.; Nevin, K. P.; Jia, H. F.; Izallalen, M.; Woodard, T. L.; Lovley, D. R. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: Monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ. Sci. 2009, 2 (1), 113?119.
(37) Renslow, R.; Babauta, J.; Majors, P.; Beyenal, H. Diffusion in biofilms respiring on electrodes. Energy Environ. Sci. 2013, 6 (2), 595? 607.
(38) Okamoto, A.; Hashimoto, K.; Nealson, K. H.; Nakamura, R. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (19), 7856?7861.
(39) Sayama, M.; Risgaard-Petersen, N.; Nielsen, L. P.; Fossing, H.; Christensen, P. B. Impact of bacterial NO3(?) transport on sediment biogeochemistry. Appl. Environ. Microbial. 2005, 71 (11), 7575?7.
(40) Stewart, P. S. Diffusion in biofilms. J. Bacteriol. 2003, 185 (5), 1485?1491.
(41) Nevin, K. P.; Kim, B. C.; Glaven, R. H.; Johnson, J. P.; Woodard, T. L.; Methe, B. A.; DiDonato, R. J.; Covalla, S. F.; Franks, A. E.; Liu, A.; Lovley, D. R. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PloS ONE 2009, 4 (5), e5628.
(42) Virdis, B.; Read, S. T.; Rabaey, K.; Rozendal, R. A.; Yuan, Z. G.; Keller, J. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Bioresour. Technol. 2011, 102 (1), 334?341.
(43) Wrighton, K. C.; Thrash, J. C.; Melnyk, R. A.; Bigi, J. P.; ByrneBailey, K. G.; Remis, J. P.; Schichnes, D.; Auer, M.; Chang, C. J.; Coates, J. D. Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Appl. Environ. Microbial. 2011, 77 (21), 7633?9.
(44) Liu, Y.; Bond, D. R. Long-distance electron transfer by G. sulfurreducens biofilms results in accumulation of reduced c-type cytochromes. ChemSusChem 2012, 5 (6), 1047?1053.
ÉúÎïĤµÄºôÎüϵͳºÍÉúÀí²ã´ÎÖеĵç×ÓÊÜÌåµÄÒÀÀµÐÔ¡ª¡ªÕªÒª¡¢½éÉÜ
ÉúÎïĤµÄºôÎüϵͳºÍÉúÀí²ã´ÎÖеĵç×ÓÊÜÌåµÄÒÀÀµÐÔ¡ª¡ª²ÄÁϺͷ½·¨
ÉúÎïĤµÄºôÎüϵͳºÍÉúÀí²ã´ÎÖеĵç×ÓÊÜÌåµÄÒÀÀµÐÔ¡ª¡ª½á¹ûºÍÌÖÂÛ
ÉúÎïĤµÄºôÎüϵͳºÍÉúÀí²ã´ÎÖеĵç×ÓÊÜÌåµÄÒÀÀµÐÔ¡ª¡ª½áÂÛ¡¢ÖÂл£¡